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Abstract: Physical modelling is referred as the first representation of a process model and 
it is represented as a set of differential and algebraic equations. Noise added to model can 
improve the estimated behaviour of the process. Adding white noise to all variables is not 
recommended mainly because there could be variables based on the derivative of the 
white noise, and this is computational infeasible and physical impossible. The studied 
problem is to decide where is allowed to add noise from physical perspective early, at the 
modelling stage, and thus to avoid further numerical problems at the stage of simulation. 
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1. INTRODUCTION 

 
Physical based and object-oriented modelling languages 
offer an interesting and useful approach in process 
modelling and simulation, very appreciated and useful in 
the world of engineers and scientists. Examples of such 
software based environment are Omola, Dymola and 
MathModelica. All these environments are connected 
with basic features of the Modelica modelling language, 
as a neutral representation of processes. More, based on 
object-matching features, it is used as standard 
representation formalism over the distributed simulation 
platforms.  
 
Perhaps the first references which emphasis a strong call 
to new modelling principles is of (Cellier, 1991), which 
clearly shows the constraints of pure mathematical 
models. Other example could be of (Astrom, et al, 1998) 
and (VisiMod, 2004), a project under the resources of 
Foundation for Strategic Research of Sweden. 
 
It is like the study is part of the global effort – as 
presented above – in order to solve some problems in the 
process modelling activity based on physical 
decomposition of the process and based on object-
oriented technology. More, some problems of noise 
modelling in the equation-based modelling are 
considered to have an equal importance.  

In section 2 the main features and problems of modelling 
following the physical decomposition of the process are 
considered. The object of the section 3 is related to 
methods of noise modelling. Some basic features of the 
Modelica modelling language are presented also. Section 
4 contains the main contribution of the paper, looking to 
define the problem, to understand the method and to 
propose solutions related to the noise modelling.  
Naturally, there should be one more section, as a case 
study. Unfortunately, until now, some symbolic 
computational problems were not possible to be solved. 
 
 

2. PHYSICAL PROCESS MODELLING 
 
It is accepted that three basic features describe the 
principles of physical modelling: 
1). the model is obtained by connecting sub-models 
which parallels the physical construction; 
2). the equations are used as obtained, i.e. without 
manually manipulate the equations; 
3). the variables are physic variables and not abstract 
quantities like in mathematical models.  
 
By applying first modelling principles, a set of equations 
are obtained, which could be organized in two subsets: a 
subset of differential equations describing the dynamics 
of the process and a subset of algebraic equations 
describing the outputs and the constraints of the 



 

 

behaviour of the considered process. Such models 
generally respect a differential algebraic equation 
structure. In the linear case it can be written as 
 

)t()t()t( uBxFxE u ⋅=⋅+⋅ &              (1.a) 
 
where )t(x is the state variable vector, )t(u  is the input 

variable vector and uBFE ,, are matrices of appropriate 

dimensions. Obviously, the matrix E is supposed singular 
and the reason is that purely algebraic equations are 
present. There is a strong desire to reformat the equation 
models in some well known structures, as the state-space 
form is. Such transformations are obtained by properly 
use of specialized software tools.  
 
In the context of real experiments where measurements 
should be considered as well for the purpose of 
identification and parameter estimation, the model (1.a) 
is improved with a measurement equation  
 

)t()t()t( exCy +⋅=                    (1.b) 

 
where )t(y  is the measurement variable vector and )t(e  

is the sensor noise vector.  
 
The name of the model representation (1) is also implicit 

system, descriptor system or generalized system (Schon, 
et al, 2003).  
 
The reason to introduce noise in process’s model is 
mainly related to un-modelled dynamics and 
disturbances acting on the process. Considering noise, 
the state-equations of the model of the process could 
have the form 
 

)t()t()t()t( wBuBxFxE wu ⋅+⋅=⋅+⋅ &        (2.a) 
 

)t()t()t( exCy +⋅=                       (2.b) 
 
where a noise component was added for state variables. 
The type of the noise regarding to the power and to the 
probability density function depends on the process. 
Usually, white noise is considered with variance 
connected with the dynamics of the process. 
 

 

2.1. Object-Oriented Modelling 
 
The term object-oriented means the equations describing 
a commonly used system can be packaged, stored and 
reused, (Gerdin and Schon, 2004). 
 
Object-oriented languages have the advantage of being 
equation-based, which means that the user can enter the 
equations describing the process without having to 
transform them into ODE form. The equations will be in 
differential-algebraic equation (DAE) form, which 
means that modelling environments must be able to 
simulate such models. 
 
 

2.2. About Modelica 
 
Modelica is a general equation-based object-oriented 
language for continuous and discrete-event modelling of 
physical systems for the purpose of efficient simulation.  
 
The language unifies and generalizes previous object-
oriented modelling languages, e.g., Omola, Smile or 
Dymola. The language has been designed to facilitate 
exchange of models, model libraries and simulation 
specifications. The reader is referred to (Tiller, 2001), 
(Fritson, 2004) (Modelica, 2004) or (Elmqvist, et al, 
1999), for a complete description of the language and its 
functionality from the perspective of the motivations and 
design goals.  
 
Modelica is being considered also as a standard for a 
model representation in the Global CAPE-OPEN project, 
(GCO, 2000), which aims at developing standard 
interfaces for simulation components, (Braunschwig, et 

al, 1999). In this paper, Modelica will be used also as 
working language based on the trend and reality which 
defines Modelica a de facto standard in physical 
modelling and object-oriented modelling technologies.  

 

 

3. NOISE METAMODELLING 
 
Figs 1 and 2 present the methodology of noise modelling 
in the context of physical modelling, i.e. the integration 
on noise models into physical process models. 
 
The class diagram of Fig. 1 shows the hierarchy of 
different models, which are used in the building of the 
system model with physical constraints. 
 
A model is a generalisation of a process model. A 
process model is an aggregation of one or more models 
based on equations. An equation based model is an 
aggregation of some model, part with noise and part 
without noise. A noise model should be compliant with 
the laws of physics and the variables involved in the 
model should have a physical meaning. 
 
Fig.2 says that a noise model could be generalized as a 
model. A noise model is a generalization of white noise 
model and band-limited noise, i.e. coloured noise. The 
last one has constraints from a physical model 
concerning the parameters like, e.g. the power of the 
noise. 
 
Noise modelling is an important task in process 
modelling. There are unmodelled phenomena and 
unknown parameters. A noise model should describe the 
how the unmeasured inputs and the unmodelled 
dynamics could change the behaviour of the considered 
system. 
 
Noise modelling means also the addition of one or more 
noise components to state variables, in order to model 
disturbances and or some random or unknown 
behaviour. 
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Fig. 1-Different types of models                                           Fig. 2 -Connections among different types of noise models 
 
 

Table 1 - Conversion example from declarative to state form representation 
 

Declarative physical model under Modelica Declarative state model  

model motor_sim 
.. 
parameter … 
Real JL, JT, omega;  
Real Tm, alfa, e, u, i; 
… 
equation 

       u = u0; 
       e = Kb * omega; 
       u = i * R + L * der(i) + e; 
       Tm = JT * alfa + b * omega; 
       alfa = der(omega); 
       JL = 0.5 * M * rd * rd; 
       JT = Jm + JL; 
       Tm = Kt * i; 
end motor_sim; 

/* DSblock model generated by Dymola from 

Modelica model motor_sim */ 
... 
TranslatedEquations 

JL_0 = 0.5 * M_0 * rd_0 * rd_0; 
JT_0 = Jm_0 + JL_0; 
... 
DynamicSection 
der_i = - divmacro( ... ,"i*R+e-u", ...);  
der_omega = - divmacro( ... ,"b*omega-Tm", ...); 
u_0 = u0_0; 
e_0 = Kb_0 * omega_0; 
Tm_0 = Kt_0 * i_0; 
 
... 
 

 
 
The model (2) contains a noise component and the 
problem is to decide where to put the noise components 
in the considered process.  
 
Naturally, the physics of the process should indicate 
which variables should have noise and which one not, 
which could be done manually for simple processes. The 
problem has two aspects: there are complex processes, 
difficult to mange; a software tool is more efficient and 
comfortable for any modeller.  
 
Adding noise to all equations can lead to derivates of 
white noise and – as results – to non-causal process, as 
infinite values of some variables. Details on how the 
non-causality with respect to the input signal, )t(u , can 
be handled are in (Gerdin, 2004). The problem itself is 
considered and solved, however by (Campbell, 1990), 
where it is suggested a band limited noise to avoid the 
problems. Also, (Varga, 1992) made an interesting 

analysis of descriptors systems, from the point of view of 
preliminary pre-processing steps in controllers and 
observers synthesis algorithms, e.g., by similarity 
transformations and model reductions 
 
Attempts to introduce white noise in the continuous 
model (2) has been done, e.g., in (Schein and Denk, 
1998) and (Winkler, 2004). (Schon, et al, 2003) derive a 
basis for the subspace of all possible causal disturbances. 
The basis is taken as wB in (2) and the noise covariance 

matrix is used as the design variable to rotate and scale 
the basis. Mainly, there is a sorting procedure in two sets 
of state variables, with a set of variables accepting 
arbitrarily white noise. 
 
The DAE model with noise will have the form  
 

)t(v)t()t()t( 121 ⋅+⋅+⋅=⋅ KuKξJξE &           (3.a) 
 



 

 

)t(v)t()t( 2+⋅= ξLy                         (3.b) 
 
where )t(v1  represents the unmeasured inputs and 

)t(v2  represents the transducers’ noise. Both signals are  
continuous white noises.  
 
The transformation of the model (3) in a state form could 
generate state variables that are functions of the 
derivative of white noise, and then the simulation is not 
possible or needs some special solvers which could – in 
turn – generate false behaviours. From physical point of 
view, variables depending on the derivative of the white 
noise do not correspond to any physical reality, i.e. 
infinite values of physical variables.  
 
The driving idea is to define constraints of the 
matrix 2K , so at the level of the raw physical model, in 
such a way to be able to decide where the noise 
generators are feasible and where are not. Thus, the 
problem of noise derivative is solved at the level of 
modelling and the problems at the level of simulation 
could be avoided.  
 
The definition of the problem and two solutions are from 
(Schon, et al, 2003) and (Gerdin, 2004), where two 
solutions based on time and frequency methods are 
presented. In the next section the frequency method is 
presented only. 
 
 

4. DESCRIPTION OF THE METHOD 
 
The method is based on the matrix transfer from noise to 
internal variables, which should be proper. In the 
opposite case, the degree of the numerator is grater then 
the degree of numerator and a non-causal representation 
is obtained.  
 
Let the transfer matrix from noise to internal variables as  
 

( ) 2
1

KJEG ⋅−=
−

s)s(                           (4) 
 
This should be proper. Following, e.g., (Rough, 1996) a 
rational matrix can be transformed into a row reduced 
form by a pre-multiplication with a unimodular matrix 
thus 
 

( )JEUD −⋅= s)s()s(                         (5) 

where  
 

2KUN ⋅= )s()s(                            (6) 

then 
 

( ) )s(s)s()s( GKJEND =⋅−=⋅
−−

2
11       (7) 

 
where )s(D  is the row reduced form of the 

matrix ( )JE −s , for a certain unimodular matrix )s(U .  
 
The condition to have a proper transfer matrix function 
is that the matrix  

)s()s( ND ⋅
−1                                (8) 

 
is proper. Following the theorem of Appendix B, the 
matrix (8) is proper if and only if the highest degree of 
the polynomials in each row in )s(N  is lower than or 

equal to the highest degree of the polynomials in the 
corresponding row of )s(D . The rows indexes for which 

the above condition does not hold show which variables 
should not have added noise in the model (3).  
 
 
4.1. The algorithm 
 
1). Write the DAE model of the system/process in the 
form (2). 
 
2). Compute the transfer matrix )s(G  from noise to 
internal variables. 
 
3). Compute the row reduced form )s(D  and storage the 

unimodular matrix )s(U . 

 
4). Decompose the matrix )s(U  following the formula: 
 

∑
=

⋅=

n

i

i
i s)s(

0

UU                            (9) 

 
5). Compute the degrees of the rows of the matrix )s(D . 
 
6). Find the values of the index i for which the inequality  
 

[ ] n,..,j,ri, jij 2102 =>=⋅ DKu               (10) 

 
does not hold. The obtained set values sets the index 
variables of the internal variables vector for which a 
noise in not allowed to add. 
 
 
4.2 An example (Schon, et al, 2003) 
 
Let a DAE model without noise as 
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With ic arbitrary constants, let the unimodular matrix as  
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The row degrees of )s(D are  
 

[ ] [ ]T0010=)s(deg D  
 
The transfer matrix function is proper if  
 

0KKU =⋅







=⋅ 221 0000

1000  

 

which means that the last raw of  2K  must be zero, and 

thus the noise can not be added to the last equation, 
being impossible from physical point of view also. 
 
 

CONCLUSIONS 
 
The objective of the work was to define the problem of 
of adding continuous white noise on DAE models and 
ply around into a case study, e.g. a d.c. motor model. 
 
Up to now, the most difficult step is the computation of 
the row reduced form of the matrix fraction description, 
in order to compute the unimodular matrix )s(U . 
References based on (Rugh, 1996) and on Polynomial 
Matlab Toolbox, (PolyX, 2004), are failed until now.  
 
The principle of the method is interesting and very 
useful in practice mainly because it is possible to decide 
at the modelling stage which variables accept white 
noise and which not. 
 
There are several ideas for further work, some of 
important directions are: 
• Simulation of the noise in Modelica, as source 

signal components in specific libraries.  
• Automatic translation of neutral models into the 

DAE form in Matlab. The advantage is of using the 
specialized functions for model conversion and 
transformations, ready available in Matlab. 

• Debugging of simulation models, i.e. finding the 
cause of errors models of physical systems. There is 
a need to filter a broad range of errors without 
having to execute the simulation model. Static 
debugging tools should reduce the number of test 
cases usually needed to validate a simulation model.  

Finally, it seems interesting that the same problems are 
studied also in other research centres and laboratories, 
e.g.,  (VisiMode, 2005). 
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APPENDIX  A - D.C. MOTOR PHYSICAL MODEL 
 
The physical model is obtained by considering the 
aggregation of the sub-models on specific domains, i.e. 
mechanical, chemical, and electrical, etc. In electrical 
domain, the induced back emf voltage is  

 

)t(K)t(e b ω⋅=                            (A.1) 
 

wherein Kb is the motor back emf constant. The 
equations of voltages across the input circuit is  
 

)t(e
dt

)t(di
LR)t(i)t(u +⋅+⋅=              (A.2) 

 
In mechanical domain, the active and resistive moments 
are connected by equations  
 

)t(b)t(J)t(T Tm ω⋅+α⋅=                     (A.3) 
 

dt

)t(d
)t(

ω
=α                                   (A.4) 

 

dt

)t(d
)t(

θ
=ω                                   (A.5) 

 

LMT JJJ +=                                  (A.6) 
 

rMJ
dL
2

2
1

⋅=                                 (A.7) 

 

where JT  is the load inertia, ω(t) is the motor shaft 
angular velocity. The connection between the two 
domains is made by   
 

)t(iK)t(T tm ⋅=                            (A.8) 

 
where Tm is the motor shaft torque and Kt  is the motor 
torque constant.  
 
The equations from (A.1) till (A.8) define a set of 
differential algebraic equations, i.e. a DAE model which 
was considered across the paper, as the start point in 
physical modelling.  
 
It is interesting to show that in almost all applications 
with objective of control, detection and estimation a state 
representation is used as  
 

)t(u)t(K)t(iR
dt

)t(di
L b +ω⋅−⋅−=⋅          (A.9.a) 

 

)t(b)t(iK
dt

)t(d
J tT ω⋅−⋅=

ω
⋅             (A.9.b) 

 

)t()t(y ω=                        (A.9.c) 

 
APPENDIX B – ALGEBRA KNOWLEDGE 

 

The definitions and the theorems are adapted from 
(Gerdin, 2004), (Rugh, 1996) and  (PolyX, 2004). 



 

 

A polynomial matrix is non-singular if it has full normal 
rank. A polynomial matrix is row reduced if its leading 
row coefficient matrix has full row rank. Another 
equivalent definition says that a non-singular polynomial 
square matrix is row reduced is the degree of the matrix 
is the sum of the rows’ degrees.  
 
A polynomial matrix P(s) has full column rank (or full 
normal column rank) if it has full column rank 
everywhere in the complex plane except at a finite 
number of points. Similar definitions hold for full row 

rank and full rank.   
 
Any polynomial matrix with full row rank may be 
transformed into row reduced form by pre-multiplying it 
by a suitable unimodular matrix.  
 
Theorem 1: If a matrix )s(D  is row reduced, then 

)s()s( ND ⋅
−1  is proper if and only if each row of 

)s(N  has degree less than or equal the degree of the 

corresponding row of )s(D , i.e.,  
 

[ ] [ ] n,...,,i,rr ii 21=≤ DN                      (B.1) 

■ 
 
Theorem 2:  Let the transfer matrix function 

( ) 2
1

KJEG ⋅−=
−

s)s(  with squares matrices E and J. 

Let )s(D  the row reduced form of the matrix ( )JE −s , 

thus ( )JEUD −⋅= s)s()s( . Let iju the j-th row of the 

matrix iU . The matrix )s(G  is proper if and only if  

 
[ ] n,..,j,ri, jij 2102 =>=⋅ DKu              (B.2) 

■ 
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